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Abstract. How perturbations such as enzyme deletions or changes in nutrient 
composition affect the distribution of fluxes in a metabolic system remains 
poorly understood. Elementary modes are a mathematical concept enabling the 
decomposition of complex metabolic networks into minimal chains of reactions 
that operate at steady state. They were proven to be a useful tool for analyzing 
the range of possible functional modes of metabolic systems. We here report an 
investigation into how the usage of elementary modes changes with substrate 
input and gene mutation. The key method of this study involved the computa-
tion of an elementary mode flux value for each elementary mode corresponding 
to different flux distributions in the central metabolism of E. coli. Our results 
indicate that elementary modes which have no external outputs (excluding co-
factors) tend to carry higher flux. Using an entirely in silico approach, we also 
propose a novel method for estimating elementary mode flux values based on 
an uptake score and show that its predictions are in better agreement with ex-
perimental findings than previous estimations based on biomass production. 

1 Introduction 

The use of stoichiometry based approaches in systems biology has the advantage 
that kinetic parameters, which are often difficult to obtain experimentally, are not 
required. Elementary modes analysis is one form of stoichiometric analysis technique 
for metabolic networks. An elementary flux mode (EM) represents a steady-state 
metabolic flux distribution, with the proportions of fluxes in different reactions ade-
quately fixed to satisfy stoichiometric consistency and mass conservation, and which 
is non-decomposable [1]. This means that the set of biochemical reactions composing 
an EM cannot be split whilst still maintaining the same rate of turnover of molecules 
through the system. It is therefore often described as a “minimal set” of reactions. 

At steady state each elementary mode can be assigned an elementary mode flux 
value. Poolman et al. [2] introduced the term “elementary mode flux” (EMF) to refer 
to a numerical value representative of the turnover rate of molecules through a partic-
ular elementary mode, rather than a particular reaction. Calculation of EMF values 
requires the use of a mathematical function which gives the set of EMFs (w) given the 
matrix of EMs (E) and the observed set of fluxes through each reaction (v). Formally, 
v = E·w; however, this relation can generally not be inverted to give w as a function 
of v as the number of EMs (rows in E) is usually far larger than the number of reac-



tions, making E non-invertible. It is therefore necessary to define a function (f) to 
calculate EMF values as 

 w = f(E, v) (1) 

Several functions have been proposed and implemented to solve this problem. 
Poolman et al. [2] used the concept of the Moore-Penrose generalized inverse, 
Schwartz & Kanehisa [3] used a quadratic programming approach, and Chan & Ji 
proposed a mixed integer linear approach [4]. Further to this, Wiback et al. [5] 
showed that, under the analysis of extreme pathways (a particular subset of elemen-
tary modes), an α-spectrum can be defined as the allowable range of extreme pathway 
contributions to a given flux distribution. 

A vector of flux values for each reaction (v) is required for the calculation of 
EMFs. Obtaining such values experimentally can be expensive and time consuming. 
On the other hand, modeling using simulated fluxes is not always possible due to a 
lack of kinetic data. Stelling et al. [6] defined a formal method to estimate the effi-
ciency of EMs and applied this principle to relate network structure to function. They 
introduced the concept of control effective flux (CEF) values, which measure how 
important reactions are to the operation of the network as a whole. Such techniques 
require only the network topology in the form of a stoichiometric matrix and can 
therefore be implemented entirely in silico. The availability of a full data set of flux 
values in both wild-type and a pyruvate kinase (pykF) knockout mutant of E. coli by 
Kurata et al. [7] and Emmerling et al. [8] provides an opportunity for the use of such 
data to help understanding the effect of such perturbation on metabolic functions. 

The primary goal of this work was to determine EMF values for the central meta-
bolic network of E. coli for different substrate inputs in both wild type and pykF 
knockout mutant and investigate the principles directing the redistribution of fluxes. 
Further to this, we adapted the control effective flux method proposed by Stelling et 
al. [6] to EMF analysis in order to predict, without experimental data, which Ems 
would have significant activity. We additionally introduce a new method for the pre-
diction of EMFs based on the calculation of an uptake score and we compare the per-
formance of this approach with the concept of efficiency as defined by Stelling et al. 

2 Methods 

The JaPathways package was used for the computation of elementary modes and 
elementary mode fluxes [9,10]. For the decomposition into EMFs to be successful it is 
essential that fluxes are strictly conserved in the original metabolic network. Since 
experimentally measured fluxes have limited precision there are cases where the orig-
inal flux distribution is not entirely consistent. For example, one discrepancy noted 
was that of the flux of the AcCoA to Acetate reaction in the distribution provided by 
Kurata et al. [7]. Flux conservation implied that the flux should be 20 whereas the 
actual value provided was 19. Similar cases were encountered in the Emmerling data 
[8]. These values were adjusted before performing the EMF calculation to allow for a 
consistent decomposition. 



To obtain EMF values for E. coli, JaPathways was executed using the experimental 
reaction flux data for wild type and for pykF knockout mutant provided by Kurata et 
al. [7]. The method was repeated for the network and corresponding flux data de-
scribed by Emmerling [8]. To verify the EMs produced by JaPathways the same stoi-
chiometric data was used with CellNetAnalyzer [11]. Compression techniques were 
applied to reduce the size of the system of equations as described by Gagneur & 
Klamt [12]. EMs and EMFs were compared using the compressed and the uncom-
pressed version of the stoichiometric data file and the output checked to be identical. 
The compressed network is represented along with the original uncompressed net-
work in Figure 1. 

 
Fig. 1. The E. coli metabolic network (a) before and (b) after compression. External metabolites 

(represented by squares, biomass represented by ‘B’) are not included in the stoichiometric 
matrix but are shown here for better clarity. Filled circles indicate reactions with multiple prod-

ucts and substrates. 

Three different methods were used to estimate EMFs using an entirely in silico ap-
proach. First, control effective flux values as defined by Stelling [6] were used as 
input to JaPathways, along with the stoichiometric matrix. These values were then 
compared to the EMF values obtained using the experimental data to test this in silico 
approach. Second, efficiency values (ej) for each individual EM (j) were calculated 
using the method described by Stelling [6]. The absolute flux of each EM (i.e. the 
sum of the stoichiometric coefficients in the mode) was divided by the absolute stoi-
chiometric flux of extracellular glucose (Glc_ext). This gave a value (aj) representa-
tive of the absolute flux of each EM, normalized by the input. The absolute amount of 
normalized biomass (bj) produced by the EM was then divided by aj. This value is 
being taken as representative of efficiency. Essentially this method optimizes for a 
small absolute flux (few reactions with little turnover) and high biomass production. 



 𝑒𝑗 =
𝑏𝑗
𝑎𝑗

 (2) 

A third method, which we introduce here, calculates what we call an ‘uptake’ score 
(uj). We begin by using the same method as above to calculate aj. However, we differ 
from Stelling’s approach by then dividing these summed values by the amount of 
Glc_ext required (gj) which is the stoichiometric uptake flux in the corresponding 
EM. In essence one can infer that the more Glc_ext is required the more costly the 
EM is and therefore the denominator becomes larger ensuring a smaller estimated 
value. Whereas Stelling’s method optimizes for biomass production, our method uses 
a similar technique to optimize for input consumption. 

 𝑢𝑗 =
𝑎𝑗
𝑔𝑗

 (3) 

3 Results 

3.1 Elementary mode fluxes 

The EM with the highest flux value for wild type is shown in Figure 2 (EM23). It 
has an EMF value of 7.78, which is 26% greater than the EM with the second highest 
EMF value of 5.73. The EM with the highest EMF value in the pykF knockout mutant 
is EM57 with a value of 3.29, which is 23% greater than the second highest EMF 
which has a value of 2.54 (Figure 2). 

Overall, 30 of the 73 EMs found had an EMF value greater than zero in the wild 
type and 46 had an EMF value greater than zero in the pykF knockout mutant. Figure 
3 shows the distribution of EMF values amongst the EMs for both wild type and mu-
tant. It shows that the mutant has a broader distribution of EMF values; the mutant 
tends to use more EMs but with smaller flux through each one. 

3.2 Throughput of the TCA cycle and pentose phosphate pathway 

Of the 73 EMs found, 24 include the tricarboxylic acid (TCA) cycle and 44 include 
the pentose phosphate (PP) pathway; 14 of these include both the TCA cycle and 
pentose phosphate pathway. The remaining 19 EMs contain neither of them. 

In wild type the sum of the EMF values for EMs involving the pentose phosphate 
pathways represents 20% of the total produced flux through the whole network. EMs 
using the TCA cycle account for 51% of the total flux through the network. 

In the pykF mutant the sum of the EMF values for EMs including the pentose 
phosphate pathway represents 63% of the total produced flux through the whole net-
work. This is an increase of 43% over wild type. The sum of the EMF values for EMs 
involving the TCA cycle in the pykF knockout mutant accounts for 68% of the total 
flux through the system, an increase of 17% over wild type. 



 
Fig. 2. The four elementary modes which have the biggest change in elementary mode flux 

value between wild type and mutant based on the Kurata et al. data. EM57 has an increase in 
flux in the mutant whereas EM23, EM9 and EM64 have a decreased elementary mode flux 

value. Numbers next to reaction arrows correspond to reaction ID. 

 
Fig. 3. Distribution of elementary mode flux values for wild type (black bars) and pykF mutant 

(white bars) E. coli as a percentage of the sum of all elementary mode flux values. 

3.3 Efficiency and control effective flux 

The availability of EMF values calculated from experimental data provided an op-
portunity to test and compare several techniques for in silico prediction of such val-
ues. Firstly efficiency values calculated as proposed by Stelling et al. [6] are shown in 
comparison to EMF values derived from the experimental data in Figure 4a. Many of 
the EMs are not efficient according to Stelling’s definition of efficiency because they 
do not produce biomass and therefore have values of zero; however our results show 
that many ”inefficient” Ems do indeed carry fluxes greater than zero. 



 
Fig. 4. Comparison between elementary mode fluxes (dashed lines) and different in silico 

scores (solid lines) for the set of 73 elementary modes from the network of Kurata et al. (a-c) 
and for the set of 83 elementary modes calculated using the nitrogen limited conditions de-

scribed by Emmerling et al. (d-f). (a,d) Solid lines represent efficiency values calculated using 
Stelling’s definition of efficiency. (b,e) Solid lines represent control effective flux (CEF) values 
as defined by Stelling and decomposed by JaPathways. (c,f) Solid lines represent uptake scores 
(equation 3). Elementary modes are sorted in each graph according to increasing scores. Values 

for solid lines in (a,d) and (c,f) have been multiplied by 10 and 0.3 respectively for scale. 

Secondly, control effective fluxes (CEF), generally described as measuring the im-
portance of a reaction, were used as input to the EMF computation algorithm in the 
same way as the experimental flux values were. A comparison between the EMF 
values for these two situations is shown in Figure 4b. Qualitatively speaking the ap-
proximation is better with many of the EMs with positive fluxes having higher values. 

Finally, our approach using a modified version of efficiency (which we term the 
uptake score) to optimize for incoming Glc_ext rather than biomass production, is 
shown in Figure 4c. This new method appears most accurate and correctly predicts 
the EM with the highest value. The method also provides a better estimate for many 
other EMs; all EMs carrying high flux are predicted to have a high uptake score. 
There appears to be a stronger qualitative correlation between the uptake score and 
the EMF value. 

Since the flux distribution strongly depends on environmental conditions we re-
peated this analysis using the alternative set of experimental conditions described by 
Emmerling et al. [8]. They experimentally measured reaction fluxes in the central 
metabolic network of E. coli in glucose limited and nitrogen limited conditions. In 
glucose limited conditions the reaction fluxes (and consequently the elementary mode 
fluxes) are highly similar to those described by Kurata et al. (data not shown). In ni-
trogen limited conditions though, some of the reaction fluxes are significantly differ-
ent. The direction of the flux is inverted in the transketolase II reaction bringing more 
flux into the pentose phosphate pathway. Because EMs in the Kurata network are 



irreversible, additional EMs are required to account for this opposite directionality of 
the flux. This results in a new set of 85 elementary modes. There is again a stronger 
correlation between the uptake score and the EMF values (Figure 4f) compared to 
previous methods (Figure 4d and e). 

4 Discussion 

We showed in this study that the quantification of flux distributions by elementary 
mode fluxes can cast new light on the principles directing the redistribution of fluxes 
in an enzymatic knockout. These principles may be used to investigate in a more sys-
tematic manner, without experimental data, the effect of gene deletions on metabolic 
activity and growth. Of the complete set of 73 EMs in the central metabolic network 
of E. coli, there are 24 which involve the TCA cycle. This represents a minority when 
compared to the number of EMs involving the PP pathway (44). Without the consid-
eration of flux information, these numbers could suggest that the PP pathway should 
carry a greater proportion of the total flux through the system, but there is no clear 
correlation between the number of EMs and the actual flux carried by the reactions 
they contain. To consider only the topology of EMs is thus unlikely to be sufficient to 
reach biological conclusions about the organization of fluxes. Similarly, to consider 
only the flux values of individual reactions can also lead to incorrect conclusions. For 
example, the flux data from Kurata et al. [7] shows reaction 9 (α-ketoglutarate to 
malate) to have a flux of 73 in the pykF mutant, whereas reaction 13 (glucose-6-
phosphate to 6-phosphogluconate) has a greater flux of 79 in the mutant. This flux 
data could give the incorrect impression that the PP pathway carries a greater propor-
tion of the total flux through the system than the TCA cycle. 

The integration of flux data with EMs via the computation of EMFs enables a 
higher level of analysis. Considering EMF values implies that, instead of considering 
fluxes in terms of individual reactions, flux levels are considered in terms of entire 
processes or paths. EMFs indicate that the EMs which contain the TCA cycle carry a 
greater proportion of the total system flux than those containing the PP pathway in 
both wild type and mutant, utilizing 51% and 68% of the total throughput of the sys-
tem respectively. The TCA cycle is crucial for life and converts carbohydrates, fats 
and proteins into water and carbon dioxide to generate energy for the organism. As 
the TCA cycle is critical, one could expect that in wild type the simplest and most 
optimal path through the system which incorporates the TCA cycle would also carry 
the highest flux. This is indeed the case with EM23, as shown in Figure 2 when opti-
mality is considered to be adapted for uptake glucose (Glc_ext), rather than for bio-
mass production. This EM has no external outputs other than cofactors and is there-
fore extremely optimized in substrate usage. Furthermore, our estimation based on 
uptake score shows a better agreement with a range of EM flux values than previous 
estimations based on biomass production. We demonstrated the repeatability of this 
result in different environmental conditions, showing that the uptake score has better 
predictive power in carbon limited and nitrogen limited experiments. These results are 
also consistent with other observations made in yeast [13] which showed that low 



yield pathways synthesizing important products can be favored over pathways max-
imizing molar yield. The maximization of molar yield thus does not seem to be a 
universal principle. These observations show that EMFs are able to quantify results 
that could be qualitatively deducted by biological intuition, adding justification to the 
use of a quadratic decomposition approach to quantify elementary mode fluxes. 

A possible explanation for the large increase in the percentage of total throughput 
of the system for EMs including the PP pathway in the pykF mutant (from 20% up to 
63%, Table 1) may be that many of them serve to supply pyruvate through alternative 
pathways. Many of the alternative paths that can provide pyruvate to the TCA cycle 
use the PP pathway. The pykF gene codes for an enzyme that catalyzes an essential 
glycolytic reaction leading to the production of pyruvate, which therefore must be 
supplied by alternative routes in the mutant. One may expect the large change from 
20% to 63% to have a catastrophic effect on the organism, especially since the PP 
pathway accounts for 35-40% of the total NADPH generated [14]; however, the dele-
tion of the glucose-6-phosphate 1-dehydrogenase (zwf) gene which is crucial to the 
PP pathway has been shown to have negligible effects on the specific growth rate and 
biomass yield [15]. This means that the organism can cope with large variations in the 
throughput of the PP pathway. 

There exists a hereditary disorder known as pyruvate kinase deficiency which can 
be caused by a mutation to the pykF gene. Sufferers of the disorder have symptoms 
including lethargy and fatigue. The extra usage of other EMs in E. coli shows that, in 
order to get enough throughput through the TCA cycle, much energy is used by in-
cluding reactions from less efficient modes through the PP pathway. It may be worth 
investigating the possibility of increasing the throughput of EMs that include the TCA 
cycle and not the PP pathway, since the regulation of these enzymes can be very ex-
pensive in terms of energy. 
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