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Overview

� Principal Component Analysis (PCA) is one of the most popular dimensionality reduction
techniques for the analysis of high dimensional datasets.

� In its standard form, PCA assumes all data points to be i.i.d. and corrupted by i.i.d. noise.

� This is often an unreasonable assumption when dealing with microarray data, where different
genes and different conditions have different levels of experimental and biological noise.

� We propose a new model-based approach to PCA that takes into account the variances
associated with each gene in each experiment [8].

� The model provides significantly better results than standard PCA, and avoids arbitrary
manipulations such as setting cut-offs on expression levels.

� We demonstrate how the model can be used to denoise a data set, leading to improved
expression profiles and tighter clusterings.

Motivation

� PCA is one of the most popular techniques for extracting information from high dimensional
datasets.

� It is very popular in microarray data analysis, where the principal components are interpreted
as the (few) physiological processes driving the variability in the data set.

� PCA makes two implicit assumptions: the first is that the data is normally distributed, the
second is that the uncertainty associated with each gene under each condition is constant.
This second assumption is often very unrealistic in biological data.

� Traditionally, this problem has been avoided by introducing cut-offs at the preprocessing
stage. This involves a large degree of arbitrariness in selecting the cut-off and potentially
throws away useful information about low expressed genes.

� Recent techniques allow to estimate credibility intervals for each gene expression in each
time point in a microarray experiment ([4],[5],[3] and [6]).

� We seek to avoid ad hoc manipulations and propagate the uncertainties through a
probabilistic model as a principled way of avoiding the problems inherent with PCA.

Probabilistic PCA

� Our model is a generalisation of the Probabilistic PCA algorithm ([9]).

� This is a latent variable model where each d -dimensional data point yn can be reconstructed
from a q-dimensional latent point xn via a linear transformation W and a corrupting noise
vector �
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� Integrating over the latent variable x, one obtains the marginal likelihood
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� Maximising the likelihood one obtains an estimate of the matrix W s.t. its columns span the
principal subspace of the data space.

Limits of Probabilistic PCA and Factor Analysis

� Probabilistic PCA assumes the data to be i.i.d. and explains all noise effects with an
indiscriminate spherical Gaussian.

� A more flexible model is Factor Analysis [1], which allows each dimension to have a different
noise variance � � N
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where B is a diagonal matrix containing the individual precisions.

� Factor Analysis however is still not flexible enough to handle common microarray situations,
where errors can vary greatly between genes and between different conditions for the same
gene. We therefore need a model which can handle non-i.i.d. data.

Propagating Uncertainty

� We consider a modified model where the “true” expression levels are i.i.d. data but each
measurement is corrupted by white noise with a different (known) variance. We assume that
these variances have been measured at a preprocessing stage, using one of the various
existing methods for obtaining credibility intervals from microarray experiments.

� Take yn to be a d -dimensional vector which represents the true log expression level
associated with the n-th gene under d different conditions. Rather than observing yn directly
we assume that we observe a corrupted form
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Here, Bn is a diagonal matrix whose i th diagonal element is given by

%

ni which is the precision
associated with the i-th experiment for the n-th gene. This precision can be obtained through
one of the probabilistic analysis methods mentioned above. A graphical model represention
of our model is given below.
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Graphical representation of the noisy PPCA model.

� We will assume a probabilistic PCA model as the marginal distribution for the true expression
level yn, as given in (1 ), and obtain,
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marginalised likelihood,
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� The corrupted data is Gaussian distributed with mean & and covariance Cn
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Notice however that, as the data is not i.i.d., the maximum likelihood estimator of the mean
vector & does no longer coincide with the empirical mean, but must be learnt alongside the
other parameters.

Efficient Likelihood Optimisation

� Given the marginal likelihood of equation (4), we can optimise the parameters through a non-
linear optimisation such as scaled conjugate gradients.

� This is generally computationally unfeasible for large data sets. A more efficient algorithm
can be obtained through an expectation maximisation (EM) approach [2].

� Generally EM algorithms lead to a simplified optimisation problem (the M-step) by
incorporating an additional step (the E-step).

� For our corrupted data PCA model this additional step is the computation of the posterior
distribution for the latent space. This posterior is obtained through Bayes’ theorem
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� The EM algorithm then iteratively updates the posterior distribution (E-step) and maximises a
lower bound on the likelihood with respect to the model parameters (M-step). The algorithm
provably converges to a maximum of the likelihood.

E-step

� The lower bound on the likelihood is given by
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where the notation

79 8

denotes the expectation under the posterior distribution over xn (5).

� The E-step evaluates these expectations from the sufficient statistics of the posterior
distribution over xn.

M-step

� Taking the gradients of eq. (6), one obtains fixed point equations for W and& which give an
approximate M-step
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where Anj is the j-th diagonal element of An and we have introduced the two matrices
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� These update equations can be iterated to find the maximum likelihood solution with respect
to W and& .

� A fixed point equation for �2 (which accounts for any residual variance) cannot be obtained
as the gradient with respect to � 2 is not linear. An efficient update for �2 can be obtained by
using Newton’s method.

Number of Principal Components

� The usual approach when implementing PCA for microarray data is to retain a reduced
number of principal directions, q, and project the log expression levels along these directions
before further processing.

� In general, the number of principal components retained is pre-determined according to the
specific problem under consideration.

� In our model, however, the estimate of the noise allows to evaluate the statistical significance
of a direction.

� Therefore, we automatically obtain the maximum number of principal components that can be
retained.

Data sets

� Data set consisted of a temporal assay of Affymetrix GeneChip arrays that measured the
gene expression profiles of a conditionally immortal cell line, UB/OC-1, from mouse cochlear
epithelial cells at embryonic day 13.5 (E13.5), across 14 days of differentiation [7].

� Of particular interest in this study is the identification of targets regulated by the transcription
factor gata-3, which is essential for normal inner ear development .

� In vivo the expression values of gata-3 are low before day 4 when they start to rise. They peak
at day 8-9 and after a couple of days the expression level decreases again to then stabilize
around a constant value.

� The raw data was processed using a modified version of the gMOS algorithm [6][5].

Profile Reconstruction
� The estimates of the parameters, together with the expectations of the hidden variables xn,

can be used in equation (3) to obtain estimates of the true gene expression levels and their
covariances, given by
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� We can then obtain an estimated profile for the “true” expression levels.

� To show the effect of the uncertainty in the data,we modelled the data three times, artificially
reducing the variances by factors 1, 4 and 9. The corrected expression profiles are shown
below.

� Note that as the uncertainty in the original profile is decreased the corrected profile tends
to stay closer to its original course. As can be seen from the plots, any point with large
associated uncertainty (such as the day 1 point for the gata-3 profile) can be significantly
changed and this can lead to a large decrease in the associated uncertainty.
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Corrected profile (thick dashed line) and original profile (thin solid line) for the gata-3 gene (a transcription
factor) left: corrected profile based using the original uncertainties; middle: corrected profile with the
uncertainty halved and right : corrected profile with a third of the original uncertainty.

Clustering

� Clustering is a widely used technique for summarising expression levels obtained from
microarray data and as an exploratory technique for finding functional analogues.

� One suggested use of PCA in microarray analysis is as a preprocessing step before cluster
analysis. The use of PCA before clustering can be justified by the fact that the larger principal
components are expected to capture the structure in the data set.

� However, standard PCA does not always improve the clustering but often degrades it,
since the dominant components, which contain most of the variation in the data, are highly
influenced by the very noisy data points.

� By accounting for the variance in the log expression levels, our algorithm automatically
downweights noisy values and ensures that the components we extract accurately reflect
the structure of the data.

� The clustering is further improved when performed on the denoised reconstructed profiles,
as these are the best estimates of the true profiles. This leads to much tighter and
biologically plausible clusters in the data set under consideration, as shown below.

Hierarchical clustering of microarray data left : the top 50 genes in the second principal component
obtained using our model (denoised profiles);middle: the top 50 genes in the second principal
component obtained using our model (original profiles) and right : the top 50 genes in the second
principal component obtained by standard PCA. Clustering was performed using the GeneCluster
software from the Eisen Lab.
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