Accounting for Probe-level Noise in Principal Component Analysis of Microarray Data

(2)

Guido Sanguinetti, Marta Milo, Magnus Rattray and Neil D. Lawrence

http://www.bioinf.man.ac.uk/resources/puma/

Overview

- · Principal Component Analysis (PCA) is one of the most popular dimensionality reduction techniques for the analysis of high dime
- . In its standard form, PCA assumes all data points to be i.i.d. and corrupted by i.i.d. noise.
- This is often an unreasonable assumption when dealing with microarray data, where different genes and different conditions have different levels of experimental and biological noise.
- We propose a new model-based approach to PCA that takes into account the variances associated with each gene in each experiment [8]. . The model provides significantly better results than standard PCA, and avoids arbitrary

manipulations such as setting cut-offs on expression levels · We demonstrate how the model can be used to denoise a data set, leading to improved expression profiles and tighter clusterings.

Motivation

- PCA is one of the most popular techniques for extracting information from high dimensional
- It is very popular in microarray data analysis, where the principal components are interpreted as the (few) physiological processes driving the variability in the data set.
- · PCA makes two implicit assumptions: the first is that the data is normally distributed, the second is that the uncertainty associated with each gene under each condition is constant. This second assumption is often very unrealistic in biological data.
- Traditionally, this problem has been avoided by introducing cut-offs at the preprocessing stage. This involves a large degree of arbitrariness in selecting the cut-off and potentially throws away useful information about low expressed genes.
- Recent techniques allow to estimate credibility intervals for each gene expression in each time point in a microarray experiment ([4],[5],[3] and [6]).
- We seek to avoid ad hoc manipulations and propagate the uncertainties through a probabilistic model as a principled way of avoiding the problems inherent with PCA.

Probabilistic PCA

- · Our model is a generalisation of the Probabilistic PCA algorithm ([9]).
- This is a latent variable model where each d-dimensional data point y_n can be reconstructed from a q-dimensional latent point x_n via a linear transformation W and a corrupting noise vector co. $\mathbf{y}_n = W \mathbf{x}_n + \mu + \epsilon_n$

The noise vector is assumed to come from a spherical Gaussian distribution ε_n ~ N (0, σ²I).

which implies a likelihood $\mathbf{y}_n | \mathbf{x}_n \sim N(W \mathbf{x}_n + \mu, \sigma^2 I).$

. Integrating over the latent variable x, one obtains the marginal likelihood

 $\mathbf{y}_n \sim N\left(\mu, WW^T + \sigma^2 I\right)$.

. Maximising the likelihood one obtains an estimate of the matrix W s.t. its columns span the principal subspace of the data space.

Limits of Probabilistic PCA and Factor Analysis

- · Probabilistic PCA assumes the data to be i.i.d. and explains all noise effects with an scriminate spherical Gaussi A more flexible model is Factor Analysis [1], which allows each dimension to have a differen
- $\epsilon \sim N(0, B^{-1})$. where B is a diagonal matrix containing the individual precisions

 Factor Analysis however is still not flexible enough to handle common microarray situations where errors can vary greatly between genes and between different conditions for the same gene. We therefore need a model which can handle non-i.i.d. data.

Propagating Uncertainty

- · We consider a modified model where the "true" expression levels are i.i.d. data but each measurement is corrupted by white noise with a different (known) variance. We assume that these variances have been measured at a preprocessing stage, using one of the various existing methods for obtaining credibility intervals from microarray experiments.
- Take v_a to be a d-dimensional vector which represents the true log expression level has y_n to be a uniformative result of the model of the transformation of the transfo

 $\hat{\mathbf{y}}_n = \mathbf{y}_n + \boldsymbol{\nu}_n$ where $\nu_{\rm e}$ is noise which is distributed as

 $\nu_n \sim N(0, B_n^{-1}).$

Here, B_n is a diagonal matrix whose ith diagonal element is given by β_{nl} which is the precisio associated with the *i*-th experiment for the *n*-th gene. This precision can be obtained through one of the probabilistic analysis methods mentioned above. A graphical model represention of our model is given below.

Graphical representation of the poisy PPCA model

 We will assume a probabilistic PCA model as the marginal distribution for the true expression level yn, as given in (1), and obtain

 $\hat{\mathbf{y}}_{n}|\mathbf{x}_{n} \sim N\left(W\mathbf{x}_{n} + \mu_{1}\sigma^{2}I + B_{n}^{-1}\right)$. We denote collectively $A_n = \sigma^2 I + B_n^{-1}$ and using $\mathbf{x}_n \sim N(0, I)$, we have the following marginalised likelihood,

 $\hat{\mathbf{y}}_n \sim N(\boldsymbol{\mu}, WW^T + A_n)$.

The corrupted data is Gaussian distributed with mean μ and covariance $C_n \doteq WW^{\mathrm{T}} + A_n$ Notice however that, as the data is not i.i.d., the maximum likelihood estimator of the mean vector μ does no longer coincide with the empirical mean, but must be learnt alongside the other parameters

Efficient Likelihood Optimisation

- . Given the marginal likelihood of equation (4), we can optimise the parameters through a nonlinear optimisation such as scaled conjugate gradients.
- This is generally computationally unfeasible for large data sets. A more efficient algorithm can be obtained through an expectation maximisation (EM) approach [2].
- Generally, FM algorithms lead to a simplified optimisation problem (the M-sten) h incorporating an additional step (the E-step). · For our corrupted data PCA model this additional step is the computation of the posterior
- distribution for the latent space. This posterior is obtained through Bayes' theorem $\mathbf{x}_{n}|\hat{\mathbf{y}}_{n} \sim N\left(M_{n}W^{T}A_{n}^{-1}(\hat{\mathbf{y}}_{n}-\boldsymbol{\mu}), M_{n}\right)$ (5)

where we have defined

 $M_n = \left[W^{\mathsf{T}} A_n^{-1} W + I \right]^{-1}.$

 The EM algorithm then iteratively updates the posterior distribution (E-step) and maximises lower bound on the likelihood with respect to the model parameters (M-step). The algorithm provably converges to a maximum of the likelihood

E-step

(1)

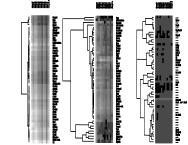
M-step

approximate M-ster

Machine Learning Group **Computer Science** University of Sheffield, U.K. Artificial Intelligence Group **Computer Science** University of Manchester, U.K.

Clustering

- · Clustering is a widely used technique for summarising expression levels obtained from microarray data and as an exploratory technique for finding functional analogues.
- One suggested use of PCA in microarray analysis is as a preprocessing step before cluster analysis. The use of PCA before clustering can be justified by the fact that the larger principal components are expected to capture the structure in the data set.
- · However, standard PCA does not always improve the clustering but often degrades it, since the dominant components, which contain most of the variation in the data, are highly influenced by the very noisy data points.
- · By accounting for the variance in the log expression levels, our algorithm automatically downweights noisy values and ensures that the components we extract accurately reflect the structure of the data
- . The clustering is further improved when performed on the denoised reconstructed profiles as these are the best estimates of the true profiles. This leads to much tighter and biologically plausible clusters in the data set under consideration, as shown below. hiini



Herarchical clustering of microarray data kiff: the top 50 genes in the second principal obtained using our model (denoted profiles)/indiate, the top 50 genes in the second principal component obtained using our model (denoted principal component), the top 50 genes in the second principal component obtained by standard PCA. Clustering was performed using the GeneCluster software from the Elsen Lab.

Acknowledgements

GS, MR and NL gratefully acknowledge support from a BBSRC award "Improved processing of microarray data with probabilistic models". MM is supported by an Advanced Training Fellowship from the Wellcome Trust

The software used can be downloaded from http://www.bicinf.man.ac.uk/resources/puma/

References

- [1] David J. Bartholomew. Latent Variable Models and Factor Analysis. Charles Griffin & Co. Ltd, London 1987
- [2] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B, 39(1):1–38, 1977.
- [3] Anne-Mette K. Hein, Sylvia Richardson, H. C. Causton, Graeme K. Ambler, and Peter J. Green. BGX: a fully Bayesian gene expression index for Affymetrix GeneChip data. *Biostatistics*, 2005.
- [4] Neil D. Lawrence, Marta Milo, Mahesan Niranian, Penny Rashbass, and Stephan Soullier Reducing the variability in cDNA microarray image processing by Bayesian inference. Bioinformatics, 20(4):518–526, 2004.
- [5] Xuejun Liu, Marta Milo, Neil D. Lawrence, and Magnus Rattray. A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips. *Bioinformatics*, 21(18):3637–3644, 2005
- [6] Marta Milo, Alireza Fazeli, Mahesan Niranjan, and Neil D. Lawrence. A probabilistic model for the extraction of expression levels from oligonucleotide arrays. *Biochemical Transations*, 31(6):1510-1512.2003.
- [7] Marcelo N. Rivolta, A. Halsall, C. Johnson, M. Tones, and Matthew C. Holley. Genetic profi ling of functionally related groups of genes during conditional differentiation of a mammalian cochlean hair cell line. Genome Research, 12(7):1091–1099, 2002.
- [8] Guido Sanguinetti, Marta Milo, Magnus Rattray, and Neil D. Lawrence. Accounting for probe-I noise in principal component analysis of microarray data. Bioinformatics, 200

[9] Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B. 6(3):611-622, 1999.

as the gradient with respect to σ^2 is not linear. An efficient update for σ^2 can be obtained by using Newton's method.

• Taking the gradients of eq. (6), one obtains fixed point equations for W and u which give an

Number of Principal Components

The usual approach when implementing PCA for microarray data is to retain a reduced number of principal directions, q, and project the log expression levels along these directions before further processing.

. In general, the number of principal components retained is pre-determined according to the cifi c problem unde

. In our model, however, the estimate of the noise allows to evaluate the statistical significance of a direction

. Therefore, we automatically obtain the maximum number of principal components that can be

Data sets

· Data set consisted of a temporal assay of Affymetrix GeneChip arrays that measured the

factor gata-3, which is essential for normal inner ear development

at day 8-9 and after a couple of days the expression level decreases again to then stabilize around a constant valu

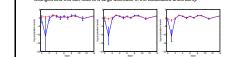
Profile Reconstruction

• The estimates of the parameters, together with the expectations of the hidden variables \mathbf{x}_n can be used in equation (3) to obtain estimates of the true gene expression levels and their covariances, given by $\bar{\mathbf{y}}_{n} = W \langle \mathbf{x}_{n} \rangle + \mu$

 $\Sigma_n = W \left[\langle \mathbf{x}_n \mathbf{x}_n^T \rangle - \langle \mathbf{x}_n \rangle \langle \mathbf{x}_n^T \rangle \right] W^T + \sigma^2 l.$

. We can then obtain an estimated profile for the "true" expression levels.

- To show the effect of the uncertainty in the data, we modelled the data three times, artificially reducing the variances by factors 1, 4 and 9. The corrected expression profiles are shown below.
- Note that as the uncertainty in the original profile is decreased the corrected profile tends to stay closer to its original course. As can be seen from the plots, any point with large associated uncertainty (such as the day 1 point for the gata-3 profile) can be significantly changed and this can lead to a large decrease in the associated uncertainty.



Corrected profile (thick dashed line) and original profile (thin solid line) for the gata-3 gene (a transcription actor) *ieft*: corrected profile based using the original uncertainties; *middle*: corrected profile with the incertainty halved and *right*: corrected profile with a third of the original uncertainty.

(3) retained (4

to W and µ.

- gene expression profi les of a conditionally immortal cell line, UB/OC-1, from mouse cochlear epithelial cells at embryonic day 13.5 (E13.5), across 14 days of differentiation [7].
- Of particular interest in this study is the identifi cation of targets regulated by the transcription
- In vivo the expression values of gata-3 are low before day 4 when they start to rise. They peak
- . The raw data was processed using a modifi ed version of the gMOS algorithm [6][5].